型号: | VT20-12 |
---|---|
品牌: | 信源 |
原产地: | 中国 |
类别: | 电子、电力 / 电池、蓄电池、充电器 |
标签︰ | 金悦诚蓄电池 , 美国信源蓄电池 , 信源免维护蓄电池 |
单价: |
-
|
最少订量: | - |
最后上线︰2024/11/02 |
信源蓄电池使用:1)检查蓄电池在支架上的固定螺栓是否拧紧,安装不牢靠会因行车震动而引起壳体损坏。另外不要将金属物放在蓄电池上以
防短路。
2)时常查看极柱和接线头连接得是否可靠,为防止接线柱氧化可以涂抹凡士林等保护剂。
3)不可用直接打火(短路试验)的方法检查蓄电池的电量这样会对蓄电池造成损害。
4)普通铅酸蓄电池要注意定期添加蒸馏水,干荷蓄电池在使用之前最好适当充电。至于可加水的免维护蓄电池并不是不能维护适当查看必要时
补充蒸馏水有助于延长使用寿命。
5)蓄电池盖上的气孔应通畅。蓄电池在充电时会产生大量气泡若通气孔被堵塞使气体不能逸出当压力增大到一定的程度后就会造成蓄电池壳体
炸裂。
6)在蓄电池极柱和盖的周围常会有黄白色的糊状物,这是因为硫酸腐蚀了根柱、线卡、固定架等造成的。这些物质的电阻很大,要及时清除。
7)当需要用两块蓄电池串联使用时蓄电池的容量最好相等。否则会影响蓄电池的使用寿命。免维护蓄电池从出厂到使用可以存放10个月,其电
压与电容保持不变,质量差的在出厂后的3个月左右电压和电容就会下降。在购买时选离生产日期有3个月的,当场就可以检查电池的电压和电
容是否达到说明书上的要求,若电压和电容都有下降的情况则说明它里面的材质不好,那么电池的质量肯定也不行,有可能是加水电池经过经
销商充电后伪装而成的。
8) 阀控铅酸蓄电池不污染设备和环境,可与微机继电保护等控制保护装置同室使用,不需专设蓄电池室,可采用多层次迭放,占地面积小,
节约工程投资。另外,由于采用特殊的铅基合金紧装配,避免了活性物质的脱落;采用合理的设计结构,使蓄电池有较长的使用寿命
信源太阳能蓄电池是由正负极板、隔板、壳体、电解液和接线桩头等组成,其放电的化学反应是依靠正极板活性物质(二氧化铅和铅)和负极板
活性物质(海绵状纯铅)在电解液(稀硫酸溶液)的作用下进行,其中极板的栅架,传统蓄电池用铅锑合金制造,免维护蓄电池是用铅钙合金制造
,前者用锑,后者用钙,这是两者的根本区别点。
2、用钙代替锑,就可以改变完全充电后的蓄电池的反电动势,减少过充电流,液体气化速度减低,从而减低了电解液的损失。 由于免维护蓄
电池采用铅钙合金栅架,充电时产生的水分解量少,水份蒸发量低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电
池相比,具有不需添加任何液体,对接线桩头、电线腐蚀少,抗过充电能力强,起动电流大,电量储存时间长等优点。
3、免维护蓄电池因其在正常充电电压下,电解液仅产生少量的气体,极板有很强的抗过充电能力,而且具有内阻小、低温起动性能好、比常规
蓄电池使用寿命长等特点,因而在整个使用期间不需添加蒸馏水,在充电系正常情况下,不需从拆下进行补充充电。但在保养时应对其电解液
的比重进行检查。
4、免维护蓄电池在盖上设有一个孔形液体(温度补偿型)比重计,它会根据电解液比重的变化而改变颜色。可以指示蓄电池的存放电状态和电解
液液位的高度。当比重计的指示眼呈绿色时,表明充电已足,蓄电池正常;当指示眼绿点很少或为黑色,表明蓄电池需要充电;当指示眼显示
淡黄色,表明蓄电池内部有故障,需要修理或进行更换。
5、免维护蓄电池也可以进行补充充电,充电方式与普通蓄电池的充电方法基本一样。充电时每单格电压应限制在2.3-2.4V间。注意使用常规充
电方法充电会消耗较多的水,充电时充电电流应稍小些(5A以下)。不能进行快速充电,否则,蓄电池可能会发生爆炸,导致伤人。当免维护蓄
电池的比重计,显示为淡黄色或红色时,说明该蓄电池已接近报废,即使再充电,使用寿命也不长。此时的充电只能做为救急的权宜之计。
6、对免维护蓄电池可用具有电流-电压特性的充电设备进行充电。该设备即可保证充足电,又可避免过充电而消耗较多的水。 一般这类免维
护电池从出厂到使用可以存放10个月,其电压与电容保持不变,质量差的在出厂后的3个月左右电压和电容就会下降。在购买时选离生产日期有
3个月的,当场就可以检查电池的电压和电容是否达到说明书上的要求,若电压和电容都有下降的情况则说明它里面的材质不好,那么电池的质
量肯定也不行,有可能是加水电池经过经销商充电后伪装而成的。
7、蓄电池的正确使用和维护 免维护蓄电池也可以进行补充充电,充电方式与普通蓄电池的充电方法基本一样。充电时每单格电压应限制在
2.3-2.4V间。注意使用常规充电方法充电会消耗较多的水,充电时充电电流应稍小些(5A以下)。不能进行快速充电,否则,蓄电池可能会发生
爆炸,导致伤人。池混合使用;不能在密封容器中使用蓄电池;
蓄电池应有完整的履历表,内容包括出厂日期,安装日期、运行情况记录等;
定期(每年一次)检查连接线是否松动,如果有松动现象,应加以紧固;
定期(每三个月一次)用柔软织物擦拭蓄电池,使蓄电池保持干净;
不得使用有机溶剂清洁蓄电池。
1.选购信源蓄电池时应注意电池外观是否完好,是否有漏液。端子是否有锈蚀和使用过的痕迹。重量是否达到要求。产品名称型号、生产厂家
信息、许可证编号等必备标识是否齐全。选购电池的标示名称一定要与用途一致。例如:标识“固定型铅酸蓄电池”的电池可用于备用电源,
不能用于汽车起动。 2.电池在使用中的充放电参数对电池寿命影响很大。电池充电推荐使用“恒压限流”方式,放电时应避免超过设计的
大电流放电和深放电。使用后及时充电。使用环境尽量选择在20℃~35℃通风良好的环境内。
3.对于能由用户加液的信源蓄电池,应定期检查液面高度,及时添加蒸馏水,保证液面高度在要求
串连广东金悦诚蓄电池有限公司生产的JYC电池信源铅酸蓄电池组的均充方法研究
单个广东金悦诚蓄电池有限公司生产的JYC电池信源铅酸蓄电池的电压与容量有限,在很多场合下要组成串连蓄电池组来使用。但蓄电池组的中的电池存在均衡性的问题。如何提高蓄电池组的使用寿命,提高系统的稳定性和减少成本,是摆在我们面前的重要问题。
广东金悦诚蓄电池有限公司生产的JYC电池信源铅酸蓄电池的使用寿命是由多方面的因素所决定,其中最重要的是蓄电池本身的物理性能。
此外,电池管理技术的低下和不合理的充放电制度也是造成电池寿命缩短的重要原因。对蓄电池组来说,除去上述原因,单体电池间的不一致性也是个重要因素。针对广东金悦诚蓄电池有限公司生产的JYC电池信源铅酸蓄电池充放电过程中存在的单体电池不均衡的现象,笔者分析比较了目前的几种均充方法,结合实际提出了无损均充方法,并进行了试验验证。
现有的均衡充电方法
实现对串联广东金悦诚蓄电池有限公司生产的JYC电池信源铅酸蓄电池组的各单体电池进行均充,目前重要有以下几种方法。
1.在电池组的各单体电池上附加一个并联均衡电路,以达到分流的用途。在这种模式下,当某个电池首先达到满充时,均衡装置能阻止其过充并将多余的能量转化成热能,继续对未充满的电池充电。该方法简单,但会带来能量的损耗,不适合快充系统。
2.在充电前对每个单体逐一通过同一负载放电至同一水平,然后再进行恒流充电,以此保证各个单体之间较为准确的均衡状态。但对蓄电池组,由于个体间的物理差异,各单体深度放电后难以达到完全一致的理想效果。即使放电后达到同一效果,在充电过程中也会出现新的不均衡现象。
3.按时、定序、单独对蓄电池组中的单体蓄电池进行检测及均匀充电。在对蓄电池组进行充电时,能保证蓄电池组中的每一个蓄电池不会发生过充电或过放电的情况,因而就保证了蓄电池组中的每个蓄电池均处于正常的工作状态。
4.运用分时原理,通过开关组件的控制和切换,使额外的电流流入电压相对较低的电池中以达到均衡充电的目的。该方法效率比较高,但控制比较复杂。
5.以各电池的电压参数为均衡对象,使各电池的电压恢复一致。如图2所示,均衡充电时,电容通过控制开关交替地与相邻的两个电池连接,接受高电压电池的充电,再向低电压电池放电,直到两电池的电压趋于一致。
该种均衡方法较好的解决了电池组电压不平衡的问题,但该方法重要用在电池数量较少的场合。
6.整个系统由单片机控制,单体电池都有独立的一套模块。模块根据设定程序,对各单体电池分别进行充电管理,充电完成后自动断开。
该方法比较简单,但在单体电池数多时会使成本大大新增,也不利于系统体积的减小。
无损均充电路
本文提出了一种无损均充电路。均充模块启动后,过充的电池会将多余的电量转移到没有充满的电池中,实现动态均衡。其效率高损失少,所有的电池电压都由均充模块全程监控。
1电路设计
N节电池串联组成的电池组,主回路电流是Ich。各串联电池都接有一个均衡旁路,如图3所示。图中BTi是单体电池,Si是MOSFET,电感Li是储能元件。Si、Li、Di构成一个分流模块Mi。
在一个充电周期中,电路工作过程分为两个阶段:电压检测阶段(时间为Tv)和均充阶段(时间为Tc)。在电压检测阶段,均衡旁路电路不工作,主电源对电池组充电,同时检测电池组中的单体电池电压,并根据控制算法计算MOSFET的占空比。在均充阶段,旁路中被触发的MOSFET由计算所得的占空比来控制开关状态,对相应的电池进行均充处理。在这个阶段中,流经各单体电池的电流是不断变化的,也是各不相同的。
除去连接在B1两端的M1,所有的旁路分流模块组成都是相同的。在均充旁路中,由于二极管Di的单向导通用途,所有的分流模块都会将多余的电量从相应的电池转移到上游电池中,而M1则把多余的电量转移到下游的电池中。
2开关管占空比的计算
充电时电池的荷电状态SOC(stateofcharge)可由下面的相关经验公式来得出,其中V是电池的端电压。
SOC=-0.24V2+7.218V-53.088
SOC是电池当前容量与额定容量之比,SOC=Q/QTOTAL×100%。
通过把电压检测阶段末期检测到的电池电压转化为荷电状态,而单节电池的储存容量Qest,n与SOC存在相应的关系,Qest,n可以被估算出来。
在充电平衡阶段,从主充器充入单节电池的电量是IchTcep。其中,Tcep为一个充电周期内均充阶段的时间。为使在均充阶段达到单节电池储存容量的平衡,均充的目标Qtar应为:
但是,在被激发的旁路和其他电池之间的充电转换是相互影响的,单体电池经旁路输出给其他电池的电流和接收的充电电流很难用一个简单的公式进行计算。不过,Gauss-Seidel迭代法可以解决这个问题。
期望的储存容量Qn可以用下式来计算:
其中,Idis,n是一个开关周期中的平均电流,Iobt,n是从其他被触发的旁路中获得的电流。Qtar是理想状态下电池经充电周期Ts达到均充时的电荷量,Qn是期望的储存容量,取Qtar=Qn,即(2)、(3)相等。通过相应换算,得到占空比的计算公式:
这里的函数fN只是一个示意函数,表示Dn和D2…D3存在一定关系。
3实验设计
为了验证本文的均衡充电方法,以两节单体电池组成的蓄电池组为例进行实验和分析,重要验证旁路中开关管对电压的调节用途。控制流程见图4。
由于没有现成的蓄电池,需用替代电池来进行实验。充电过程中蓄电池内阻和端电压都在不断变化,并且充电过程中电池蓄积能量,根据对蓄电池的物理性质的分析和相关资料,采用“电阻串联电容”来替代单体蓄电池来进行实验。
本实验中,选用两个小功率NpN管C1815(Q1、Q2)来替代开关管,用89C51芯片的p1.0和p1.1脚控制Q1、Q2的开关。同时,蓄电池的端电压V1和V2由差动放大电路采集,经A/D转换送到CpU。在整个过程中,电压每20ms采样一次,每隔1s上传上位机并保存并自动绘制曲线。图5为试验电路图。
实验结果与分析
通过实验结果可以看出,充电开始时电压相差为1.98V,在经过充电140s后,电压相差值约为0.2V;在均充过程中,电池电压有趋向一致的趋势。均充方法能根据单体电池的差异,缩短蓄电池组之间的不一致性,使蓄电池组的整体性能得到提高,寿命延长。
同时,从实验结果来看,该方法也有效果不理想的地方,那就是两节电池端电压差值较大。究其原因,一是本实验中用“电阻串联电容”来替代蓄电池,这和真实的蓄电池存在差别,无法达到理想的模拟状态;二是本实验重要是检验开关管的开关对电压的均衡影响,在很多环节上进行了简化处理,忽略了一些次要因素,而这些因素也对实验结果有一定的影响。
但总的来说,本实验达到了预定的目的,证明了无损均充法的可行性。